Hybrid Compressed Sensing
نویسندگان
چکیده
We consider the problem of recovering a k-sparse signal (x) from hybrid (complex and real), noiseless compressive samples (y) using a mixture of complex-valued sparse and realvalued dense projections within a single matrix. The proposed Hybrid Compressed Sensing (HCS) employs the complex-sparse part of the projection matrix to divide the n-dimensional signal (x) into subsets. In turn, each subset of the signal (coefficients) is mapped onto a complex sample of the measurement vector (y). Under a worst-case scenario of such sparsity-induced mapping, when the number of complex sparse measurements is sufficiently large then this mapping leads to the isolation of a significant fraction of the k non-zero coefficients into different complex measurement samples from y. Using a simple property of complex numbers (namely complex phases) one can identify the isolated non-zeros of x. After reducing the effect of the identified non-zero coefficients from the compressive samples, we utilize the realvalued dense submatrix to form a full rank system of equations to recover the signal values in the remaining indices (that are not recovered by the sparse complex projection part). We show that the proposed hybrid approach can recover a k-sparse signal (with high probability) while requiring only m ≈ 3k 3 √ n/2k real measurements (where each complex sample is counted as two real measurements). We also derive expressions for the optimal mix of complex-sparse and real-dense rows within an HCS projection matrix. Further, in a practical range of sparsity ratio (k/n), the hybrid approach outperforms even the most complex compressed sensing frameworks (namely basis pursuit with dense Gaussian matrices). The theoretical complexity of HCS is less than the complexity of solving a full-rank system of m linear equations. In practice, the complexity can be lower than this bound.
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملThe Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications
ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...
متن کاملThe Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications
ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کامل